Periodic Wake Behind a Circular Cylinder at Low Reynolds Numbers

Author:

Hussain A K M F,Ramjee V

Abstract

SummaryThe effects of free-stream turbulence and of sinusoidal free-stream pulsations of controlled frequencies and amplitudes on the periodic wake of a circular cylinder are investigated experimentally by employing hot-wire and smoke visualisation techniques. In addition, the effects of cylinder yaw and mild favourable and adverse pressure gradients on the vortex shedding mechanism have been explored.The data relating frequency to mean velocity follow Berger’s relation; this relation is uninfluenced by free-stream turbulence intensities up to 8 per cent. As the longitudinal turbulence intensity increases from 0.3 to 8 per cent, the downstream distance Lp behind the cylinder over which the hot-wire signal is periodic decreases progressively, indicating that the otherwise steady periodic wake interacts non-linearly with the three-dimensional free-stream turbulence and undergoes either transition or rapid diffusion by turbulence, depending on both the Reynolds number and the turbulence intensity. For a given turbulence intensity, Lp decreases also with increasing Reynolds number.The shedding frequency behind a yawed cylinder does not vary as the cosine of the yaw angle ϕ for ϕ < 50°; the signal switches intermittently between periodic and irregular form as the yaw is increased from 0 to 70°. Mild pressure gradients (favourable as well as adverse) do not affect the shedding frequency; this is confirmed by smoke visualisation, which also shows that the pressure gradient changes the longitudinal vortex spacing downstream; the measured frequency is that determined by the local Reynolds number corresponding to the Berger relation.Sinusoidal streamwise pulsations of controlled frequencies, and of amplitudes up to 10 per cent of free-stream velocity, have no effect on the natural shedding frequency; this is confirmed by smoke visualisation of the cylinder wake. However, the wake signal is amplitude-modulated at a frequency equal to the difference between the pulsation frequency and the natural shedding frequency corresponding to the free-stream mean velocity. The vortices are diffused faster in the presence of pulsation. When the pulsation amplitude is increased beyond 20 per cent, the hot-wire signal frequency in the wake equals the driving frequency; the frequency in the wake centre is also that of the pulsation. The effect of free-stream pulsation on the periodic wake is different from that due to longitudinal or transverse cylinder vibration, when lock-in has been observed.It appears that free-stream disturbances – random or periodic – cannot account for the “Tritton jump”.

Publisher

Cambridge University Press (CUP)

Subject

General Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3