Sandy shore ecosystems and the threats facing them: some predictions for the year 2025

Author:

Brown A.C.,McLachlan A.

Abstract

Pollution, mining, disruption of sand transport and tourism development widely affect sandy shores, and these systems may be subject to increased erosion in future, yet there have been few attempts to review them. The present review focuses largely on ocean sandy beaches, providing an introduction to much of the relevant literature, and predicting possible states of the system by 2025. Sandy shores are dynamic harsh environments, the action of waves and tides largely determining species diversity, biomass and community structure. There is an interchange of sand, biological matter and other materials between dunes, intertidal beaches and surf zones. Storms and associated erosion present the most substantial universal hazard to the fauna. Human-related perturbations vary from beach to beach; however, structures or activities that impede natural sand transport or alter the sand budget commonly lead to severe erosion, often of a permanent nature. Many beaches also suffer intermittent or chronic pollution, and direct human interference includes off-road vehicles, mining, trampling, bait collecting, beach cleaning and ecotourism. These interferences typically have a negative impact on the system. Identified long-term trends include chronic beach erosion, often largely due to natural causes, as well as increased ultraviolet (UV) radiation and changes related to global warming. It is not expected that predicted temperature changes will have dramatic effects on the world's beaches by 2025, but the expected rise in sea level, if coupled with an increase in the frequency and/or intensity of storms, as predicted for some regions, is likely to lead to escalating erosion and consequent loss of habitat. It is suggested that increased UV radiation is unlikely to have significant effects. Increases in coastal human populations and tourism, thus increasing pressure on the shore, while serious, may be largely offset in developed and developing countries by better management resulting from greater understanding of the factors governing sandy-shore systems and better communication with beach managers and developers. Beach nourishment is likely to become more widely practised. However, the continuing hardening of surfaces in and above the dunes is bound to be damaging. Human pressures in many underdeveloped countries show no signs of being mitigated by conservation measures; it is likely that their sandy shores will continue to deteriorate during the first quarter of this century. A long-term trend that cannot be ignored is the excessive amount of nitrogen entering the sea, particularly affecting beaches in estuaries and sheltered lagoons. The data presently available and the uncertainty of a number of predictions do not permit of quantitative assessment or modelling of the state of the world's sandy shores by the year 2025, but some tentative, qualitative predictions are offered.

Publisher

Cambridge University Press (CUP)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Pollution,Water Science and Technology

Cited by 310 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3