A palaeoenvironmental reconstruction to aid in the restoration of floodplain and wetland habitat on an upper deltaic plain, California, USA

Author:

BROWN K.J.,PASTERNACK G.B.

Abstract

While tens of millions of dollars have been spent on land acquisition and planning for current and future floodplain and wetland restoration in the Sacramento-San Joaquin Delta, knowledge of the historical processes and landscape heterogeneity that are helpful in guiding the environmental restoration are often scarce. This study used palaeoenvironmental reconstruction to increase the historical perspective, with the aim of improving environmental management. Twelve sediment cores collected from the McCormack-Williamson Tract (MWT) leveed farmland and the juxtaposed Delta Meadows (DM) tidal wetland were sampled for a suite of environmental proxies. MWT was a non-tidal flood plain during much of the late-Holocene, with a mosaic of other habitats including dry uplands, riparian forests, and freshwater wetlands persisting nearby. Comparison with the regional sea-level history suggests that the upper delta gradually came under tidal influence 3000–800 calendar years before present (cal BP). Despite this, floodplain landforms and habitats prevailed at DM from 3650–330 cal BP, after which wetlands expanded, suggesting that a flood-based disturbance regime typified the upper delta for most of the late-Holocene. Recently, the upper deltaic plain has been profoundly disturbed by agriculture and other activities, rendering significant loss of habitat. It is believed that a flood-based disturbance regime will recur at MWT if the levees surrounding the tract are intentionally breached as planned for restoration, culminating in a variety of habitats similar to pre-agricultural conditions. Concentrations of Hg, Pb, As, and P pollutants elevated several-fold in surficial sediments are of particular concern, potentially becoming problematic after restoration.

Publisher

Cambridge University Press (CUP)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Pollution,Water Science and Technology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3