Connecting protected areas in the Iberian peninsula to facilitate climate change tracking

Author:

Mingarro MarioORCID,Lobo Jorge M.ORCID

Abstract

SummaryProtected areas (PAs) are intended to preserve natural places, aiming to sustain ecosystem functionality and preserve biodiversity. However, PAs are spatially static, while major threats to biodiversity, such as climate and land-use change, are dynamic. The climatic conditions represented in a PA could vanish in the future and appear in other places more or less far away from the PA; these places could be considered as recipient areas potentially suited to receive propagules from the source PAs, which tend to lose the climatic conditions that motivated their protection. This study estimates the current and future climatic representativeness of mainland Iberian national parks by identifying future areas with a similar climate to those existing now in the parks and taking into account the degree of anthropogenic alteration and protection. We identify a network of ecological corridors connecting Iberian national parks with their recipient areas, as well as discriminating those most conflicting areas that impede network connectivity due to their degree of land-use transformation. Our results identify important areas for maintaining the climatic representativeness of Iberian national parks in the future, showing a substantial reduction in the climatic representativeness of the Iberian national parks. Although most of the recipient areas now have forest and semi-natural land uses and more than half of their whole area has protected status, current land uses in the Iberian Peninsula severely obstruct the corridor network connecting the parks and recipient areas.

Publisher

Cambridge University Press (CUP)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Pollution,Water Science and Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3