Interactions between land use/land cover change, forest fires and landscape structure in Sierra de Gredos (Central Spain)

Author:

VIEDMA OLGA,MORENO JOSÉ M.,RIEIRO IGNACIO

Abstract

In fire-prone areas, like the Mediterranean, land abandonment and forestation may interact with fire to alter landscape properties and eventually fire hazard and occurrence. However, the spatial interactions among the two processes (land-use/land cover change [LULC] and fire) are poorly known. Here, we analysed the relative effect of LULC change and fire on the landscape structure of an area of Central Spain frequently affected by fire. A series of Landsat MSS images from 1975 to 1990 was analysed to quantify annual changes in LULC, map fire perimeters and evaluate the changes in landscape properties. The temporal dynamics were analysed by annually computing the fraction occupied by each LULC type and landscape structural properties (number, size, shape and arrangement of patches) that might play a role in fire propagation. All of these were calculated separately for the unburned or the burned areas during the study period, as well as for the entire area. At the whole landscape level, or in the unburned area, LULC changes were small, yet the two more flammable LULC types tended to increase, and the landscape tended to become more homogeneous. In the burned area, the area covered by pine woodlands tended to decrease, and that covered by shrublands to increase. Burned areas turned into shrublands only five years after fire. Landscape indices indicative of reduced fragmentation were also found. Both LULC change and fire altered landscape patterns in the whole area to create a less fragmented and more contiguous landscape than in 1975. The changes induced in the whole landscape by fire, in spite of the overall low disturbance rate, were sufficient to closely determine the changes in landscape composition (LULC types) and patterns.

Publisher

Cambridge University Press (CUP)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Pollution,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3