Man and Forests: A Case-study from the Dry Tropics of India

Author:

Singh V.P.,Singh J.S.

Abstract

The present study analyses the energy-budget of ‘village ecosystems’ in a dry tropical environment. These systems depend to a great extent on the surrounding natural forest/savanna ecosystems. Accordingly the objectives of the study were to quantify (i) the energy efficiency of rain-fed agriculture at the ecosystem level, and (ii) the indirect impact of agricultural activity on the surrounding forest/savanna ecosystems.Agronomic output from farming is not sufficient to meet the food-energy requirements of the villagers, hence 27.0 to 51.0% of the requirement is met from outside markets. Operation of the agro-ecosystems involved requires a considerable amount of subsidy from the surrounding forest/savanna ecosystems in terms of fodder and fuel-wood. About 81 to 100% of the fuel needs, and 80–87% of the fodder needs, are met from the natural forest/savanna ecosystems. Thus, for each unit of energy obtained in agronomic yield (including milk), 3.1 units of energy are expended from the surrounding natural ecosystems in the form of fodder and fuel-wood.The erratic and ill-distributed nature of monsoon rains results in moisture deficit which affects the crop production in dry-land farming, causing partial or total failure of the crops. For achieving increased and stable agronomic production under rain-fed conditions, improved dry-land farming techniques have to be applied. Some of these techniques are: (1) introduction of crops and varieties that would be capable of maturing in a period of 90–100 days, and adequate use of appropriate fertilizers; (2) planned rain-water management including storage of surface runoff; and (3) practices of intercropping with crops of longer duration than those currently grown, having slow growth-rates in the early part of their life-cycles.

Publisher

Cambridge University Press (CUP)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Pollution,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3