Incorporating behavioural variation in individual-based simulation models of marine reserve effectiveness

Author:

BABCOCK RUSSELL C.,EGLI DANIEL P.,ATTWOOD COLIN G.

Abstract

SUMMARYEffective spatial management of marine species requires informed planning, as well as ongoing assessment. For mobile species such as fish, knowledge of the scale and variation in movement is central to key planning decisions, such as the size and shape of marine reserves and the interpretation of the response of protected populations. For example, populations of species that require large areas of habitat may not show increases in abundance inside small reserves, but calculating optimal reserve size is complicated by individual variations in behaviour. Fish movements can be used to quantitatively inform marine reserve planning and assessment. An individual based numerical simulation model including acoustic telemetry and census data was used to simulate changes in populations of snapper Pagrus auratus in north-eastern New Zealand. Four behavioural categories and offshore migration were used to represent the observed variability in movement. Age-structures of modelled fish populations in fully exploited areas, marine reserves and virgin populations differed substantially. However, the population structure within reserves resembled a fully fished population more closely than an unfished population. Due to the range of movement types shown by snapper, fish were not ‘locked up’ by reserves, and fish with centres of activity based in reserves were predicted to have a relatively high chance of being caught outside these reserves. Furthermore, the model showed that the response of fish populations within marine reserves was dependent on levels of exploitation in fished areas. For snapper in coastal reef areas, reserves c. 40 km2 or more may be required to achieve abundances > 50% of the unfished stock. On balance, while marine reserves with sizes similar to Leigh and Tawharanui (c. 5 km2) can achieve significant levels of protection for snapper, they are too small to fully protect resident reserve snapper populations.

Publisher

Cambridge University Press (CUP)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Pollution,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3