Species protection in areas conserved through community-driven direct democracy as compared with a large private land trust in California

Author:

Crain Benjamin JORCID,Sanchirico James N,Kroetz Kailin,Benefield Amy E,Armsworth Paul R

Abstract

SummaryProtected area systems include sites preserved by various institutions and mechanisms, but the benefits to biodiversity provided by different types of sites are poorly understood. Protected areas established by local communities for various reasons may provide complementary benefits to those established by large-scale agencies and organizations. Local communities are geographically constrained, however, and it remains unclear how effectively they protect biodiversity. We explored this issue by focusing on protected areas established through direct democracy via local ballot initiatives whereby communities vote to tax themselves for open space preservation. We compared the effectiveness of local ballot-protected areas to areas protected by a large-scale conservation actor, The Nature Conservancy (TNC). We evaluated how well the two protected area types correspond with amphibians, reptiles, birds, mammals and special status elements of natural diversity. Local ballot-protected areas differed from those of TNC in terms of size, location, proximity to urban areas and habitat diversity. In terms of potential habitat coverage, local ballot-protected areas outperformed TNC sites for all species groups with the exception of special status elements of natural diversity. While not necessarily targeting wildlife and habitats, we conclude that locally established protected areas can make an important contribution to biodiversity conservation.

Publisher

Cambridge University Press (CUP)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Pollution,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3