Sustainability of fishery bycatch: a process for assessing highly diverse and numerous bycatch

Author:

Stobutzki Ilona,Miller Margaret,Brewer David

Abstract

In tropical prawn (shrimp) trawl fisheries it is daunting to assess the sustainability of bycatch species because they are diverse and there is little historical and biological information for quantitative stock assessments. We developed a process to examine the likely impact of prawn trawling on the sustainability of bycatch species and applied this to fish bycatch in the Australian Northern Prawn Fishery. The 411 fish bycatch species were ranked with respect to biological and ecological criteria that contributed to two overriding characteristics, namely first, their susceptibility to capture and mortality due to prawn trawling, and second the population's capacity to recover after depletion. The rank of each species on these two characteristics determined its relative capacity to sustain trawling, and therefore its priority for research and management. Species that were the least likely to be sustainable came from the families Apogonidae, Ariidae, Bathysauridae, Callionymidae, Congridae, Diodontidae, Labridae, Opisthognathidae, Plotosidae, Synodontidae and Tetraodontidae. These species are highly susceptible to capture by trawls, they are benthic or demersal, their primary habitat is soft sediments, and their diet may include prawns. The recovery capacity of these species is also low, with the estimated removal rate by trawling high. The species that were the most likely to be sustainable came from the families Carangidae, Clupeidae, Ephippidae, Scombridae, Sphyraenidae and Terapontidae. They are less susceptible to capture by trawls, they are generally pelagic, their primary habitat is not in trawl grounds, and they have a broad depth distribution and range in the fishery. These species also have a greater capacity to recover, as most individuals have bred before capture, and a low estimated removal rate by trawling. The final ranking of the species must be used with caution because of the assumptions made in the process. However, the process is a valuable first step towards ensuring the sustainability of the bycatch species. Because of the simplicity of the process, it can be readily used in fisheries, particularly those with diverse bycatch, to manage the sustainability of their bycatch.

Publisher

Cambridge University Press (CUP)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Pollution,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3