Abstract
Abstract
The Antarctic Peninsula Ice Sheet (APIS) has become a significant contributor to sea-level rise over recent decades. Accurately estimating the ice discharge from the outlet glaciers of the APIS is crucial to quantify the mass balance of the Antarctic Peninsula. We here compute the ice discharge from the outlet glaciers of the APIS north of 70
${^\circ }$
S for the five most widely used ice-thickness reconstructions, using a common surface velocity field and a common set of flux gates, so the differences in ice discharge can be solely attributed to the differences in ice thickness at the flux gates. The total volumetric ice discharge for 2015–2017 ranges within 45–141 km3 a−1, depending on the ice-thickness model, with a mean of 87 ± 44 km3 a−1. The substantial differences between the ice-discharge results, and a multi-model normalized root-mean-squared deviation of 0.91 for the whole data set, reveal large differences and inconsistencies between the ice-thickness models, giving an indication of the large uncertainty in the current ice-discharge estimates for the APIS. This manifests a fundamental problem of the region: the scarcity of appropriate ice-thickness measurements and the difficulty of the current models to reconstruct the ice-thickness distribution in this complex region.
Funder
Agencia Estatal de Investigación
Elitenetzwerk Bayern
Deutscher Akademischer Austauschdienst
Publisher
Cambridge University Press (CUP)