Development of a low-temperature immersion microscopy technique for ice research

Author:

Muniozguren-Arostegi Bittor,Muñoz-Marzagon Patricia,Faria Sérgio HenriqueORCID

Abstract

Abstract Perennial ice can be studied for many purposes, including paleoclimate records or rheological properties. For most of those purposes, the ice microstructure must be studied, often through optical microscopy. The aim of this work is to assess the viability of immersion microscopy for the study of ice microstructures. It consists of using an oil between the objective lens and the specimen, to increase image resolution. Immersion microscopy is a technique well-developed for the investigation of diverse materials, but it has so far not been explored for ice research. Here we investigate the challenges and advantages of that technique. The main challenge is related to the selection of the immersion oil itself, which must satisfy a number of criteria, ranging from refractive index and viscosity to toxicity and reactivity. We identify pure silicone oil (dimethicone) as a simple and safe option for immersion microscopy of inner ice structures. Among its advantages, it provides higher resolution (compared to standard ‘dry’ microscopy) and it can be simultaneously used as a long-term coating to prevent undesired sublimation of the ice-sample surfaces. For the observation of surface structures, however, another type of oil with higher refractive index should be used.

Funder

Agencia Estatal de Investigación

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Reference27 articles.

1. VII.-On the Estimation of Aperture in the Microscope.

2. The multiscale structure of Antarctica part I: Inland ice;Faria;Low Temperature Science,2009

3. Kipfstuhl, S , Faria, S , Hamann, I , Freitag, J and Wilhelms, F (2007) Freak patterns in the interface between polar ice and silicone oil. In Wilhelms F, ed., 11th International Conference on the Physics and Chemistry of Ice (PCI-2006), Berichte zur Polar- und Meeresforschung (Reports on Polar and Marine Research), Vol. 549, Bremerhaven, Germany, p. 148.

4. Refractive Indices of Hexagonal Ice

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3