Author:
BEZHANISHVILI GURAM,BEZHANISHVILI NICK,LUCERO-BRYAN JOEL,VAN MILL JAN
Abstract
AbstractWe develop the theory of Krull dimension forS4-algebras and Heyting algebras. This leads to the concept of modal Krull dimension for topological spaces. We compare modal Krull dimension to other well-known dimension functions, and show that it can detect differences between topological spaces that Krull dimension is unable to detect. We prove that for aT1-space to have a finite modal Krull dimension can be described by an appropriate generalization of the well-known concept of a nodec space. This, in turn, can be described by modal formulaszemnwhich generalize the well-known Zeman formulazem. We show that the modal logicS4.Zn:=S4+ zemnis the basic modal logic ofT1-spaces of modal Krull dimension ≤n, and we construct a countable dense-in-itselfω-resolvable Tychonoff spaceZnof modal Krull dimensionnsuch thatS4.Znis complete with respect toZn. This yields a version of the McKinsey-Tarski theorem forS4.Zn. We also show that no logic in the interval [S4n+1S4.Zn) is complete with respect to any class ofT1-spaces.
Publisher
Cambridge University Press (CUP)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献