SQUARES AND NARROW SYSTEMS

Author:

LAMBIE-HANSON CHRIS

Abstract

AbstractA narrow system is a combinatorial object introduced by Magidor and Shelah in connection with work on the tree property at successors of singular cardinals. In analogy to the tree property, a cardinalκsatisfies thenarrow system propertyif every narrow system of heightκhas a cofinal branch. In this paper, we study connections between the narrow system property, square principles, and forcing axioms. We prove, assuming large cardinals, both that it is consistent that ℵω+1satisfies the narrow system property and$\square _{\aleph _\omega , < \aleph _\omega } $holds and that it is consistent that every regular cardinal satisfies the narrow system property. We introduce natural strengthenings of classical square principles and show how they can be used to produce narrow systems with no cofinal branch. Finally, we show that the Proper Forcing Axiom implies that every narrow system of countable width has a cofinal branch but is consistent with the existence of a narrow system of width ω1with no cofinal branch.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference17 articles.

1. Measurable cardinals and the continuum hypothesis

2. Successors of Singular Cardinals

3. [13] Neeman I. , The tree property up to ℵ ω+1, this JOURNAL, vol. 79 (2014), no. 2, pp. 429–459.

4. SQUARES, SCALES AND STATIONARY REFLECTION

5. Indexed squares

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Narrow systems revisited;Bulletin of the London Mathematical Society;2024-03-30

2. Strong tree properties, Kurepa trees, and guessing models;Monatshefte für Mathematik;2023-11-25

3. A note on highly connected and well-connected Ramsey theory;Fundamenta Mathematicae;2023

4. KNASTER AND FRIENDS III: SUBADDITIVE COLORINGS;The Journal of Symbolic Logic;2022-06-30

5. SPECIALISING TREES WITH SMALL APPROXIMATIONS I;The Journal of Symbolic Logic;2022-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3