Author:
CORDÓN-FRANCO ANDRÉS,FERNÁNDEZ-DUQUE DAVID,JOOSTEN JOOST J.,LARA-MARTÍN FRANCISCO FÉLIX
Abstract
AbstractLet T be a second-order arithmetical theory, Λ a well-order, λ < Λ and X ⊆ ℕ. We use $[\lambda |X]_T^{\rm{\Lambda }}\varphi$ as a formalization of “φ is provable from T and an oracle for the set X, using ω-rules of nesting depth at most λ”.For a set of formulas Γ, define predicative oracle reflection for T over Γ (Pred–O–RFNΓ(T)) to be the schema that asserts that, if X ⊆ ℕ, Λ is a well-order and φ ∈ Γ, then$$\forall \,\lambda < {\rm{\Lambda }}\,([\lambda |X]_T^{\rm{\Lambda }}\varphi \to \varphi ).$$In particular, define predicative oracle consistency (Pred–O–Cons(T)) as Pred–O–RFN{0=1}(T).Our main result is as follows. Let ATR0 be the second-order theory of Arithmetical Transfinite Recursion, ${\rm{RCA}}_0^{\rm{*}}$ be Weakened Recursive Comprehension and ACA be Arithmetical Comprehension with Full Induction. Then,$${\rm{ATR}}_0 \equiv {\rm{RCA}}_0^{\rm{*}} + {\rm{Pred - O - Cons\ }}\left( {{\rm{RCA}}_0^{\rm{*}} } \right) \equiv {\rm{RCA}}_0^{\rm{*}} + \,{\rm{Pred - O - Cons\ }}\left( {{\rm{RCA}}_0^{\rm{*}} } \right) \equiv {\rm{RCA}}_0^{\rm{*}} + \,{\rm{Pred - O - RFN}}\,_{{\bf{\Pi }}_2^1 } \left( {{\rm{ACA}}} \right).$$We may even replace ${\rm{RCA}}_0^{\rm{*}}$ by the weaker ECA0, the second-order analogue of Elementary Arithmetic.Thus we characterize ATR0, a theory often considered to embody Predicative Reductionism, in terms of strong reflection and consistency principles.
Publisher
Cambridge University Press (CUP)
Reference29 articles.
1. Induction rules, reflection principles, and provably recursive functions
2. [1] Beeson M. and Ščedrov A. , Church’s thesis, continuity, and set theory, this Journal, vol. 49 (1984), no. 2, pp. 630–643.
3. Well-orders in the transfinite Japaridze algebra;Fernández-Duque;Logic Journal of the Interest Group in Pure and Applied Logic,2014
4. Reflection principles and provability algebras in formal arithmetic
5. On Provability Logics with Linearly Ordered Modalities
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A topological completeness theorem for transfinite provability logic;Archive for Mathematical Logic;2023-02-22
2. Arithmetical and Hyperarithmetical Worm Battles;Journal of Logic and Computation;2022-10-27
3. Hyperarithmetical Worm Battles;Logical Foundations of Computer Science;2021-12-16
4. MÜNCHHAUSEN PROVABILITY;The Journal of Symbolic Logic;2021-06-10
5. The omega-rule interpretation of transfinite provability logic;Annals of Pure and Applied Logic;2018-04