Author:
SINAPOVA DIMA,UNGER SPENCER
Abstract
AbstractWe show that from large cardinals it is consistent to have the tree property simultaneously at${\aleph _{{\omega ^2} + 1}}$and${\aleph _{{\omega ^2} + 2}}$with${\aleph _{{\omega ^2}}}$strong limit.
Publisher
Cambridge University Press (CUP)
Reference18 articles.
1. [5] Friedman S.-D. , Honzik R. , and Stejskalová S. , The tree property at the double successor of a singular with a larger gap. Preprint, 2015. Available at logika.ff.cuni.cz/sarka/papers/Friedman_Honzik_Stejskalova_A-tree-gap.pdf.
2. The tree property below ${\aleph _{\omega \cdot 2}}$.;Specker;Annals of Pure and Applied Logic,2016
3. The tree property at successors of singular cardinals
4. On SCH and the approachability property
5. The tree property at the double successor of a measurable cardinal κ with 2κlarge
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献