Abstract
AbstractLetA≤Bbe structures, and${\cal K}$a class of structures. An elementb∈BisdominatedbyArelative to${\cal K}$if for all${\bf{C}} \in {\cal K}$and all homomorphismsg,g':B → Csuch thatgandg'agree onA, we havegb=g'b. Our main theorem states that if${\cal K}$is closed under ultraproducts, thenAdominatesbrelative to${\cal K}$if and only if there is a partial functionFdefinable by a primitive positive formula in${\cal K}$such thatFB(a1,…,an) =bfor somea1,…,an∈A. Applying this result we show that a quasivariety of algebras${\cal Q}$with ann-ary near-unanimity term has surjective epimorphisms if and only if$\mathbb{S}\mathbb{P}_n \mathbb{P}_u \left( {\mathcal{Q}_{{\text{RSI}}} } \right)$has surjective epimorphisms. It follows that if${\cal F}$is a finite set of finite algebras with a common near-unanimity term, then it is decidable whether the (quasi)variety generated by${\cal F}$has surjective epimorphisms.
Publisher
Cambridge University Press (CUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献