Comparison of alternative pest and soil management strategies for Maine potato production systems

Author:

Gallandt E.R.,Mallory E.B.,Alford A.R.,Drummond F.A.,Groden E.,Liebman M.,Marra M.C.,McBurnie J.C.,Porter G.A.

Abstract

AbstractPotato acreage and total production in Maine have declined steadily since the 1960s. In 1991, a University of Maine research team established a large-scale, long-term, comparative study of three factors that form the foundation of productive potato cropping systems: soil management, pest management, and variety choice. This study, the Potato Ecosystem Project, included 96 main plots (5.8 ha total) and near-by “component studies.” The project contrasted amended vs. unamended soil management strategies; conventional vs. reduced-input vs. bio-intensive pest management strategies; and disease and stress susceptible vs. tolerant potato varieties. Given recent concerns over resistance to pesticides and increasing costs of agricultural chemical inputs, the reduced-input and bio-intensive pest management systems provided encouraging results. Weed growth was similar in the conventional and reduced-input systems. Colorado potato beetle thresholds were exceeded less often and their densities were lower in the bio-intensive system than in the reduced-input and conventional systems. Lady beetles, which are major aphid predators, were more abundant in the bio-intensive pest management system compared with the reduced-input and conventional systems in 5 of the 6 years. Tuber yield and quality were maintained at a high level in the reduced-input system, although difficulties with plant disease, nutrient and weed management contributed to significantly lower yields in the bio-intensive pest management system. Economic analysis indicated that from 1993 to 1996, the reduced-input system had a greater return over variable cost (avg. $973 ha-1) than the conventional (avg. $890ha-1) and bio-intensive pest management systems (avg. $578ha-1). The amended soil management system achieved rapid improvements in soil quality: soil organic matter, water stable aggregates, potassium, and soluble inorganic phosphorus contents increased while requirements for synthetic fertilizers were reduced. These improvements in soil quality enhanced late-season crop vigor, canopy duration and tuber quality, and increased yields by 13% and 30% over the unamended system in 1994 and 1995, respectively, but not in 1996. Improved crop vigor in the amended soil management system also benefited weed control efforts by encouraging a more weed-suppressive potato crop. In the biointensive pest management system, in which weeds were controlled mechanically, the amended soil management system had less weed biomass than the unamended soil management system in 1994 and 1995. Conversely, the amended soil management system consistently increased flea beetle populations and, in one of two years, the incidence of Rhizoctonia. The choice of potato variety also affected pest dynamics. Total aphid density (all aphid species considered together) and almost all disease ratings were higher on ‘Superior’ than ‘Atlantic’ potato.

Publisher

Cambridge University Press (CUP)

Subject

Agricultural and Biological Sciences (miscellaneous)

Reference37 articles.

1. 29. USDA. 1988–1996. Agricultural Prices. Annual reports. Agric. Statistics Board, National Agric. Statistics Service, U.S. Dept. of Agriculture, Washington, DC.

2. 37. Westra J.V. , and Boyle K.J. . 1991. An economic analysis of crops grown in rotation with potatoes in Aroostook County, Maine. Maine Agric. and Forest Experiment Station Bulletin 834.

3. From conventional to integrated agriculture;Vereijken;Netherlands J. of Agric. Sci.,1986

4. Reduced chemical input cropping systems in the southeastern United States. I. Effect of rotations, green manure crops and nitrogen fertilizer on crop yields

5. 33. USDA. 1995–1997. Agricultural prices, January. Agric. Statistics Board, National Agric. Statistics Service, U.S. Dept. of Agriculture, Washington, DC.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3