Modeling of technological performance trends using design theory

Author:

Basnet Subarna,Magee Christopher L.

Abstract

Functional technical performance usually follows an exponential dependence on time but the rate of change (the exponent) varies greatly among technological domains. This paper presents a simple model that provides an explanatory foundation for these phenomena based upon the inventive design process. The model assumes that invention – novel and useful design – arises through probabilistic analogical transfers that combine existing knowledge by combining existing individual operational ideas to arrive at new individual operating ideas. The continuing production of individual operating ideas relies upon injection of newbasicindividual operating ideas that occurs through coupling of science and technology simulations. The individual operational ideas that result from this process are then modeled as being assimilated in components of artifacts characteristic of a technological domain. According to the model, two effects (differences in interactions among components for different domains and differences in scaling laws for different domains) account for the differences found in improvement rates among domains whereas the analogical transfer process is the source of the exponential behavior. The model is supported by a number of known empirical facts: further empirical research is suggested to independently assess further predictions made by the model.

Publisher

Cambridge University Press (CUP)

Subject

General Engineering,Visual Arts and Performing Arts,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3