Author:
Boxma Onno,Mandjes Michel,Reed Josh
Abstract
AbstractIn this paper we study a reflected AR(1) process, i.e. a process (Zn)n obeying the recursion Zn+1= max{aZn+Xn,0}, with (Xn)n a sequence of independent and identically distributed (i.i.d.) random variables. We find explicit results for the distribution of Zn (in terms of transforms) in case Xn can be written as Yn−Bn, with (Bn)n being a sequence of independent random variables which are all Exp(λ) distributed, and (Yn)n i.i.d.; when |a|<1 we can also perform the corresponding stationary analysis. Extensions are possible to the case that (Bn)n are of phase-type. Under a heavy-traffic scaling, it is shown that the process converges to a reflected Ornstein–Uhlenbeck process; the corresponding steady-state distribution converges to the distribution of a normal random variable conditioned on being positive.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献