Abstract
AbstractLogarithmic asymptotics of the mean process {Sn∕n} are investigated in the presence of heavy-tailed increments. As a consequence, a full large deviations principle for means is obtained when the hazard function of an increment is regularly varying with index α∈(0,1). This class includes all stretched exponential distributions. Thus, the previous research of Gantert et al. (2014) is extended. Furthermore, the presented proofs are more transparent than the techniques used by Nagaev (1979). In addition, the novel approach is compatible with other common classes of distributions, e.g. those of lognormal type.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献