Author:
Iksanov Alexander,Kabluchko Zakhar
Abstract
Abstract
Let (Wn(θ))n∈ℕ0 be the Biggins martingale associated with a supercritical branching random walk, and denote by W_∞(θ) its limit. Assuming essentially that the martingale (Wn(2θ))n∈ℕ0 is uniformly integrable and that var W1(θ) is finite, we prove a functional central limit theorem for the tail process (W∞(θ)-Wn+r(θ))r∈ℕ0 and a law of the iterated logarithm for W∞(θ)-Wn(θ) as n→∞.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献