Abstract
AbstractRecent higher-order explicit Runge–Kutta methods are compared with the classic fourth-order (RK4) method in long-term integration of both energy-conserving and lossy systems. By comparing quantity of function evaluations against accuracy for systems with and without known solutions, optimal methods are proposed. For a conservative system, we consider positional accuracy for Newtonian systems of two or three bodies and total angular momentum for a simplified Solar System model, over moderate astronomical timescales (tens of millions of years). For a nonconservative system, we investigate a relativistic two-body problem with gravitational wave emission. We find that methods of tenth and twelfth order consistently outperform lower-order methods for the systems considered here.
Publisher
Cambridge University Press (CUP)
Subject
Mathematics (miscellaneous)