On the condition number of integral equations in linear elasticity using the modified Green's function

Author:

Argyropoulos E.,Gintides D.,Kiriaki K.

Abstract

AbstractIn this work the modified Green's function technique for an exterior Dirichlet and Neumann problem in linear elasticity is investigated. We introduce a modification of the fundamental solution in order to remove the lack of uniqueness for the solution of the boundary integral equations describing the problems, and to simultaneously minimise their condition number. In view of this procedure the cases of the sphere and perturbations of the sphere are examined. Numerical results that demonstrate the effect of increasing the number of coefficients in the modification on the optimal condition number are also presented.

Publisher

Cambridge University Press (CUP)

Subject

Mathematics (miscellaneous)

Reference13 articles.

1. MODIFIED FUNDAMENTAL SOLUTIONS FOR THE SCATTERING OF ELASTIC WAVES BY A CAVITY

2. [7] Gintides D. , Kiriaki K. and Roach G. F. , “Modified Green's function techniques for exterior problems in elasticity”, Math. research report no. 5, Univ. Strathclyde, 1993.

3. Modified fundamental solutions for the scattering of elastic waves by a cavity: Numerical results

4. On the exterior problems of acoustics: II

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3