THE TWO-TRAIN SEPARATION PROBLEM ON LEVEL TRACK WITH DISCRETE CONTROL

Author:

HOWLETT PHIL

Abstract

When two trains travel along the same track in the same direction, it is a common safety requirement that the trains must be separated by at least two signals. This means that there will always be at least one clear section of track between the two trains. If the safe-separation condition is violated, then the driver of the following train must adopt a revised strategy that will enable the train to stop at the next signal if necessary. One simple way to ensure safe separation is to define a prescribed set of latest allowed section exit times for the leading train and a corresponding prescribed set of earliest allowed section entry times for the following train. We will find strategies that minimize the total tractive energy required for both trains to complete their respective journeys within the overall allowed journey times and subject to the additional prescribed section clearance times. We assume that the drivers use a discrete control mechanism and show that the optimal driving strategy for each train is defined by a sequence of approximate speedholding phases at a uniquely defined optimal driving speed on each section and that the sequence of optimal driving speeds is a decreasing sequence for the leading train and an increasing sequence for the following train. We illustrate our results by finding optimal strategies and associated speed profiles for both trains in some elementary but realistic examples.

Publisher

Cambridge University Press (CUP)

Subject

Mathematics (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy-Efficient and Safe-Separation Operation for Successive Trains;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

2. Optimal Driving Strategies for Two Successive Trains on Level Track With Safe Separation;IEEE Transactions on Intelligent Transportation Systems;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3