Wave motion in a conducting fluid with a layer adjacent to the boundary, II. Eigenfunction expansions

Author:

Smith William V.

Abstract

AbstractThe wave motion of magnetohydrodynamic (MHD) systems can be quite complicated. In order to study the motion of waves in a perfectly conducting fluid under the influence of an external magnetic field in a stratified medium, we make the simplifying assumption that the pressure is constant (to first order). This is the simplest form of the equations with variable coefficients and is not strongly propagative. Alfven waves are still present. The system is further simplified by assuming that the external field is parallel to the boundary. The Green's function for the operator is constructed and then the spectral family is constructed in terms of generalized eigenfunctions, giving four families of propagating waves, including waves “trapped” in the boundary layer. These trapped waves are interesting, since they are not the relics of surface waves, which do not exist in this context when the boundary layer shrinks to zero thickness no matter what (maximal energy preserving) boundary condition is chosen. We conjecture a similar structure for the full MHD problem.

Publisher

Cambridge University Press (CUP)

Subject

Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3