Abstract
We derive an evolution equation for the free-surface dynamics of a thin film of a second-grade fluid over an unsteady stretching sheet using long-wave theory. For the numerical investigation of the viscoelastic effect on the thin-film dynamics, a finite-volume approach on a uniform grid with implicit flux discretization is applied. The present results are in excellent agreement with results available in the literature for a Newtonian fluid. We observe that the fluid thins faster with the rapid stretching rate of the sheet, but the second-grade parameter delays the thinning behaviour of the liquid film.
Publisher
Cambridge University Press (CUP)
Subject
Mathematics (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献