Self-heating behaviour of low moisture content particles—modelling the basket-heating of solid particles and some aspects of the cross over behaviour using milk powder as an example

Author:

Chen Xiao Dong

Abstract

AbstractSelf-heating in packed paniculate that is exothermically reactive is a major cause of fire and explosion in the powder industry. This study is focused on part of the Auckland development of a mathematical model dealing with this hazardous process in industry using milk powder as an example. Milk powder is a primary powdered food product around the world.An update of the detailed mathematical model is given here, and predictions are made using the model to simulate the basket-heating behaviour of a milk powder in the laboratory (so the model can thus be validated). Basket heating in an oven is a standard laboratory technique for measuring the exothermic reactivity of a solid material.After a favorable comparison with the laboratory results, several aspects of basket-heating were investigated with a view to further improving the technique. Firstly, the model was used to explore the effect of elevated ambient humidity and initial sample water content upon the heating process in the basket. Secondly, the model was used to explore the cross over phenomenon which is related to a novel procedure for measuring activation energy and exothermicity (that is, the Crossing-Point-Temperature (CPT) method, which is a new version of the basket heating technique). The predictions together with the experimental evidence show that the reaction kinetics obtained using the Heat Release (HR) method (another version of the basket heating technique well published in the literature) may not be correct, especially for those measured at elevated oven temperatures and for larger basket sizes. Thirdly, simulations were performed to illustrate that the CPT phenomenon does not just occur at the center of the basket but also occurs everywhere else in the sample. This can become a significant advantage for further development of the CPT method in terms of reducing experimental duration and improving reproducibility.

Publisher

Cambridge University Press (CUP)

Subject

Mathematics (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3