Abstract
Mealybug is an important pest of cassava plant in Thailand and tropical countries, leading to severe damage of crop yield. One of the most successful controls of mealybug spread is using its natural enemies such as green lacewings, where the development of mathematical models forecasting mealybug population dynamics improves implementation of biological control. In this work, the Sharpe–Lotka–McKendrick equation is extended and combined with an integro-differential equation to study population dynamics of mealybugs (prey) and released green lacewings (predator). Here, an age-dependent formula is employed for mealybug population. The solutions and the stability of the system are considered. The steady age distributions and their bifurcation diagrams are presented. Finally, the threshold of the rate of released green lacewings for mealybug extermination is investigated.
Publisher
Cambridge University Press (CUP)
Subject
Mathematics (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献