Conditions for permanence in well-known biological competition models

Author:

van Vuuren Jan H.,Norbury John

Abstract

AbstractReaction-diffusion systems are widely used to model the population densities of biological species competing for natural resources in their common habitat. It is often not too difficult to establish positive uniform upper bounds on solution components of such systems, but the task of establishing strictly positive uniform lower bounds (when they exist) can be quite troublesome. Two previously established criteria for the permanence (non-extinction and non-explosion) of solutions of general weakly-coupled competition-diffusion systems with diagonally convex reaction terms are used here as background to develop more easily verifiable and concrete conditions for permanence in various well-known competition diffusion models. These models include multi-component reaction-diffusion systems with (i) the by now classical Lotka-Volterra (logistic) reaction terms, (ii) higher order “logistic” interaction between the species, (iii) logistic-logarithmic reaction terms, (iv) Ayala-Gilpin-Ehrenfeld θ-interaction terms (which are used to model Drosophila competition), (v) logistic-exponential interaction between the species, (vi) Schoener-exploitation and (vii) modified Schoener-interference between the species. In (i) a known condition for permanence (for the ODE-system) is recovered, while in (ii)–(vii) new criteria for permanence are established.

Publisher

Cambridge University Press (CUP)

Subject

Mathematics (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3