Opening a conversation on responsible environmental data science in the age of large language models

Author:

Oliver Ruth Y.ORCID,Chapman Melissa,Emery Nathan,Gillespie Lauren,Gownaris Natasha,Leiker Sophia,Nisi Anna C.,Ayers David,Breckheimer Ian,Blondin Hannah,Hoffman Ava,Pagniello Camille M.L.S.ORCID,Raisle Megan,Zimmerman NaupakaORCID

Abstract

Abstract The general public and scientific community alike are abuzz over the release of ChatGPT and GPT-4. Among many concerns being raised about the emergence and widespread use of tools based on large language models (LLMs) is the potential for them to propagate biases and inequities. We hope to open a conversation within the environmental data science community to encourage the circumspect and responsible use of LLMs. Here, we pose a series of questions aimed at fostering discussion and initiating a larger dialogue. To improve literacy on these tools, we provide background information on the LLMs that underpin tools like ChatGPT. We identify key areas in research and teaching in environmental data science where these tools may be applied, and discuss limitations to their use and points of concern. We also discuss ethical considerations surrounding the use of LLMs to ensure that as environmental data scientists, researchers, and instructors, we can make well-considered and informed choices about engagement with these tools. Our goal is to spark forward-looking discussion and research on how as a community we can responsibly integrate generative AI technologies into our work.

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

Reference77 articles.

1. AI for social good: unlocking the opportunity for positive impact

2. Fostering self-directed learning in the university setting

3. Miceli, M , Posada, J and Yang, T (2022) Studying up machine learning data: Why talk about bias when we mean power? In Proceedings of the ACM on Human-Computer Interaction.

4. Samuel, Y , George, J and Samuel, J (2020) Beyond STEM, How Can Women Engage Big Data, Analytics, Robotics and Artificial Intelligence? An Exploratory Analysis of Confidence and Educational Factors in the Emerging Technology Waves Influencing the Role of, and Impact Upon, Women [Internet]. arXiv; 2020 [cited 2023 May 1]. Available at http://arxiv.org/abs/2003.11746 (accessed 28 February 2024).

5. Ferrara, E (2023a) Should ChatGPT be Biased? Challenges and Risks of Bias in Large Language Models [Internet]. arXiv; 2023 [cited 2023 Oct 2]. Available at http://arxiv.org/abs/2304.03738 (accessed 28 February 2024).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3