Identifying compound weather drivers of forest biomass loss with generative deep learning

Author:

Anand MohitORCID,Bohn Friedrich J.,Camps-Valls Gustau,Fischer Rico,Huth Andreas,Sweet Lily-belle,Zscheischler Jakob

Abstract

Abstract Globally, forests are net carbon sinks that partly mitigates anthropogenic climate change. However, there is evidence of increasing weather-induced tree mortality, which needs to be better understood to improve forest management under future climate conditions. Disentangling drivers of tree mortality is challenging because of their interacting behavior over multiple temporal scales. In this study, we take a data-driven approach to the problem. We generate hourly temperate weather data using a stochastic weather generator to simulate 160,000 years of beech, pine, and spruce forest dynamics with a forest gap model. These data are used to train a generative deep learning model (a modified variational autoencoder) to learn representations of three-year-long monthly weather conditions (precipitation, temperature, and solar radiation) in an unsupervised way. We then associate these weather representations with years of high biomass loss in the forests and derive weather prototypes associated with such years. The identified prototype weather conditions are associated with 5–22% higher median biomass loss compared to the median of all samples, depending on the forest type and the prototype. When prototype weather conditions co-occur, these numbers increase to 10–25%. Our research illustrates how generative deep learning can discover compounding weather patterns associated with extreme impacts.

Publisher

Cambridge University Press (CUP)

Reference109 articles.

1. Tree mortality submodels drive simulated long-term forest dynamics: Assessing 15 models from the stand to global scale;Bugmann;Ecosphere,2019

2. Kingma, DP and Welling, M (2013) Auto-encoding variational bayes, 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, Conference Track Proceedings.

3. Impact of large-scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data;Zscheischler;Global Biogeochemical Cycles,2014a

4. Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019;Bastos;Earth System Dynamics,2021

5. Models for prediction of mortality in even-aged forest;Eid;Scandinavian Journal of Forest Research,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3