Fire as a large-scale edge effect in Amazonian forests

Author:

Cochrane Mark A.,Laurance William F.

Abstract

Amazonian forests are being rapidly cleared, and the remaining forest fragments appear unusually vulnerable to fire. This occurs because forest remnants have dry, fire-prone edges, are juxtaposed with frequently burned pastures, and are often degraded by selective logging, which increases forest desiccation and fuel loading. Here we demonstrate that in eastern Amazonia, fires are operating as a large-scale edge effect in the sense that most fires originate outside fragments and penetrate considerable distances into forest interiors. Multi-temporal analyses of satellite imagery from two frontier areas reveal that fire frequency over 12-14-y periods was substantially elevated within at least 2400 m of forest margins. Application of these data with a mathematical core-area model suggests that even large forest remnants (up to several hundred thousand ha in area) could be vulnerable to edge-related fires. The synergistic interactions of forest fragmentation, logging and human-ignited fires pose critical threats to Amazonian forests, particularly in more seasonal areas of the basin.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 343 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3