Changes in tree species abundance in a Neotropical forest: impact of climate change

Author:

Condit Richard,Hubbell Stephen P.,Foster Robin B.

Abstract

ABSTRACTThe abundance of all tree and shrub species has been monitored for eight years in a 50 ha census plot in tropical moist forest in central Panama. Here we examine population trends of the 219 most numerous species in the plot, assessing the impact of a long-term drying trend. Population change was calculated as the mean rate of increase (or decrease) over eight years, considering either all stems ≥10 mm diameter at breast height (dbh) or just stems ≥100 mm dbh. For stems ≥10 mm, 40% of the species had mean growth rates <1% per year (either increasing or decreasing) and 12% had changes ≥5% per year. For stems ≥100 mm, the figures were 38% and 8%.Species that specialize on the slopes of the plot, a moist microhabitat relative to the plateau, suffered significantly more declines in abundance than species that did not prefer slopes (stems ≥10 mm dbh). This pattern was due entirely to species of small stature: 91% of treelets and shrubs that were slope-specialists declined in abundance, but just 19% of non-slope treelets and shrubs declined. Among larger trees, slope and non-slope species fared equally. For stems ≥100 mm dbh, the slope effect vanished because there were few shrubs and treelets with stems ≥100 mm dbh. Another edaphic guild of species, those occurring preferentially in a small swamp in the centre of the plot, were no more likely to decline in abundance than non-swamp species, regardless of growth form. Species that preferentially colonize canopy gaps in the plot were slightly more likely to decrease in abundance than non-colonizing species (only for stems ≥10 mm dbh, not ≥100 mm). Despite this overall trend, however, several colonizing species had the most rapidly increasing populations in the plot.The impact of a 25-year drying trend and an associated increase in the severity of the 4-month dry season is having an obvious impact on the BCI forest. At least 16 species of shrubs and treelets with affinities for moist microhabitats are headed for extinction in the plot. Presumably, these species invaded the forest during a wetter period prior to 1966. A severe drought of 1983 that caused unusually high tree mortality contributed to this trend, and may also have been responsible for sharp increases in abundance of a few gap-colonizers because it temporarily opened the forest canopy. The BCI forest is remarkably sensitive to a subtle climatic shift, yet we do not know whether this is typical for tropical forests because no other large-scale censuses exist for comparison.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3