Animal dispersal of two secondary-vegetation herbs into the evergreen rain forest of south-eastern Mexico

Author:

Castillo-Flores Aida A.,Calvo-Irabién Luz Maria

Abstract

Rain forests at Los Tuxtlas are islands surrounded by anthropogenic vegetation containing invasive species. Epizoochory is an important dispersal syndrome among invasive species but ecological studies are scant. In order to evaluate the movement of epizoochore diaspores into the mature forest, we selected two abundant secondary herbs with contrasting diaspore morphology, and five dispersers with different pelage type. We used stuffed mammals as a dummy and passed them through patches of these two plant species, counting the number of adhered diaspores. For dispersal into the forest, diaspores were manually adhered to dispersers, these were pulled along 100-m forest transects, counting the number of diaspores remaining at distance intervals. We observed the highest amount of detachment in the first 20 m of the forest edge. For Desmodium incanum diaspores with sticky hairs, adhesion to dispersers showed no differences among pelage types, therefore dispersal is determined mainly by diaspore detachment. Dispersers with long pelage (Didelphis marsupialis, Nasua narica and Procyon lotor) move diaspores for shorter distances, while dispersers with short pelage (Silvilagus floridanus and Philander opossum) are more likely to move diaspores for longer distances. In Pavonia schiedeana more diaspores (seeds with spines and hooks) were attached and remained attached on dispersers with long and thick pelage. Mean distance travelled for P. schiedeana diaspores varied between 11 and 2700 m. In D. incanum the distance travelled did not exceed 500 m. Based on comparisons between dispersal patterns and on ecological data of these two plant species and their potential dispersers, P. schiedeana has a higher probability of invading the forest and finding suitable habitats for establishment than D. incanum.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3