Nitrogen availability is not affected by frequent fire in a South African savanna

Author:

Coetsee Corli,February Edmund C.,Bond William J.

Abstract

Abstract:There is a perception that sustained frequent fires cause nitrogen limitation over the long term (50–100 y) by volatilizing the nitrogen in soil, plant biomass and litter. Here we test this perception in a South African savanna located in the Kruger National Park. At our study site we compare the effects of 50 y of fire exclusion, season (August and February) and frequency (triennial and annual August and triennial February) of burn on nitrogen cycling and availability. We do this using three different methods to determine nitrogen mineralization; in situ incubations, laboratory incubations and ion-exchange resin bags. On each treatment we established two parallel transects 100 m apart with 10 sampling points per treatment along these transects. Daily mineralization rates for in situ incubations were determined monthly from August 2004 to June 2005 at each of the sampling points. Ion-exchange resin bags were buried (5 cm) at the same points and left in the field from August 2004 to August 2005. In February 2005 five randomly located soil samples from each of the four treatments were collected for laboratory incubations using a 7-cm-diameter soil auger. Regardless of method used our results show that there are no significant differences in daily nitrogen mineralization rates after 50 y of different burning treatments from annual burning to fire exclusion. In fact, both in situ and laboratory incubations show that nitrogen availability is higher on the annual burn than the fire exclusion (0.16 μg g−1 soil d−1 vs. 0.11 μg g−1 soil d−1 and 0.46 μg g−1 soil d−1 vs. 0.30 μg g−1 soil d−1 respectively). Perceived negative effects of fire on ecosystem functioning has curbed the use of fire as a management tool with fire often actively suppressed in savanna. The results of our study show that fire can be used more vigorously in mesic African savanna to manipulate tree:grass ratios without negatively affecting the nitrogen cycle.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3