Fruit and flower phenology at two sites in Kibale National Park, Uganda

Author:

Chapman C. A.,Wrangham R. W.,Chapman L. J.,Kennard D. K.,Zanne A. E.

Abstract

Examination of phenological patterns of tropical trees at different temporal and spatial scales can elucidate biotic and abiotic factors that correlate with fruiting, flowering and/or leaf set patterns. In this study, 3793 trees from 104 species in Kibale National Park, Uganda were monitored. The trees were selected from two sites (Kanyawara and Ngogo) separated by 10 km. Trees were monitored monthly to document community-wide and population-level fruiting and flowering patterns for a maximum of 76 mo. Analysis of two sites over a number of years permitted examination of generalities of patterns found on smaller spatial and temporal scales. Spectral analysis indicated that community-level flowering and fruiting at Kanyawara exhibited regular annual peaks, although the flowering peaks were of shorter duration. At Ngogo, community-level flowering also displayed regular annual peaks, but fruiting had an irregular pattern with no distinct peaks. The abundance of fruiting trees at Kanyawara was negatively related to the minimum temperature in the previous season (3–7 mo prior). Since fruiting tended to peak when the first wet season of the year was ending and the dry season was beginning, this suggests that the minimum temperature in the previous dry season is important in determining how many individuals fruit. Flowering at Kanyawara peaked immediately after the maximum annual period of high irradiance. Within-species synchronization was evident in the flowering for all species examined at Ngogo and for 64% of those at Kanyawara. Fruiting was synchronous within species for 64% of the species at both sites. Despite this general community-level synchronization, the months of peak fruiting and flowering for some species varied markedly among years. Furthermore, for a number of species the timing of fruiting or flowering events differed between Kanyawara and Ngogo. For some species, trends that were suggested from one year of data were not supported when additional years were considered. Although these two sites are close together, share many of the same species, and experience similar climatic regimes, many phenological patterns were site-dependent.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3