Flowering and fruiting phenologies of seasonal and aseasonal neotropical forests: the role of annual changes in irradiance

Author:

Zimmerman Jess K.,Wright S. Joseph,Calderón O.,Pagan M. Aponte,Paton S.

Abstract

The seasonality of both rainfall and solar irradiance might influence the evolution of flowering and fruiting in tropical forests. In seasonally dry forests, to the degree that soil moisture limits plant productivity, community-wide peaks in reproduction are expected during the rainy season, with seedfall and germination timed to allow seedlings to become well established while soil moisture is available. Where soil moisture is never seasonally limiting, seasonal changes in light availability caused by periods of cloudiness or seasonally low zenithal sun angles should favour reproduction during seasons when irradiance levels are high. To evaluate these predictions, we documented the timing of flower and fruit fall for 10 and 15 y at El Verde, Puerto Rico, and Barro Colorado Island (BCI), Panama. At El Verde, rainfall is abundant year-round and solar declination largely determines seasonal variation in irradiance. At BCI, rainfall is abundant throughout the 8-mo wet season while drought develops and average solar irradiance increases by 40–50% over the 4-mo dry season. Seasonal variation in the number of species flowering and fruiting at both sites was generally consistent with the hypothesis that seasonal variation in irradiance limits the evolution of reproductive phenologies. Community-level metrics provided no evidence for a similar role for moisture availability at BCI. Seasonal variation in irradiance also strongly influenced seed development times at both sites. Thus, community-wide phenologies reveal a strong signature of seasonal changes in irradiance, even in those forests that exhibit some degree of seasonality in rainfall.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3