Spatial variability of the decomposition rate of Schoenoplectus tatora in a polluted area of Lake Titicaca

Author:

Costantini Maria Letizia,Sabetta Letizia,Mancinelli Giorgio,Rossi Loreto

Abstract

Lake Titicaca is the largest freshwater lake in South America and one of the highest and oldest of the world's large lakes, but very little of its ecology is known. We report results from a study on the spatial variation of decomposition rate of Schoenoplectus tatora in Inner Puno Bay affected by direct wastewater discharges. The aims of the research were: (1) to evaluate the effect of benthos exclusion and the influence of other environmental factors on decomposition and (2) to map the decomposition rate in order to describe the spatial heterogeneity in the water body. We carried out the study at 21 sampling points using both fine-meshed and coarse-meshed litterbags to exclude and to allow detritivore action, respectively. Decomposition was on the average faster in the former than in the latter treatment. However, the difference decreased with increasing detritivore abundance, and reversed in the most densely populated waters of the bay. Coupled spatial dependence of the decomposition rate and temperature was observed. Both variables were related with the distance from the wastewater discharges, suggesting that thermal pollution constrains the decomposition rate within the inner bay. Detritivores did not change the general trend imposed by temperature, but their presence increased the spatial heterogeneity of the process.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3