Prediction model to identify infectious COVID-19 patients in the emergency department

Author:

Aung Myat OoORCID,Venkatachalam IndumathiORCID,Sim Jean X.Y.ORCID,Wee Liang En,Aung May K.,Yang Yong,Conceicao Edwin P.ORCID,Arora ShalviORCID,Lee Marcus A.B.,Sia Chang H.,Tan Kenneth B.K.,Ling Moi LinORCID

Abstract

Abstract Background: Real-time reverse-transcriptase polymerase chain reaction (RT-PCR) has been the gold standard for diagnosing coronavirus disease 2019 (COVID-19) but has a lag time for the results. An effective prediction algorithm for infectious COVID-19, utilized at the emergency department (ED), may reduce the risk of healthcare-associated COVID-19. Objective: To develop a prototypic prediction model for infectious COVID-19 at the time of presentation to the ED. Material and methods: Retrospective cohort study of all adult patients admitted to Singapore General Hospital (SGH) through ED between March 15, 2020, and December 31, 2022, with admission of COVID-19 RT-PCR results. Two prediction models were developed and evaluated using area under the curve (AUC) of receiver operating characteristics (ROC) to identify infectious COVID-19 patients (cycle threshold (Ct) of <25). Results: Total of 78,687 patients were admitted to SGH through ED during study period. 6,132 of them tested severe acute respiratory coronavirus 2 positive on RT-PCR. Nearly 70% (4,226 of 6,132) of the patients had infectious COVID-19 (Ct<25). Model that included demographics, clinical history, symptom and laboratory variables had AUROC of 0.85 with sensitivity and specificity of 80.0% & 72.1% respectively. When antigen rapid test results at ED were available and added to the model for a subset of the study population, AUROC reached 0.97 with sensitivity and specificity of 95.0% and 92.8% respectively. Both models maintained respective sensitivity and specificity results when applied to validation data. Conclusion: Clinical predictive models based on available information at ED can be utilized for identification of infectious COVID-19 patients and may enhance infection prevention efforts.

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3