Non-smooth saddle-node bifurcations I: existence of an SNA

Author:

FUHRMANN GABRIEL

Abstract

We study one-parameter families of quasi-periodically forced monotone interval maps and provide sufficient conditions for the existence of a parameter at which the respective system possesses a non-uniformly hyperbolic attractor. This is equivalent to the existence of a sink-source orbit, that is, an orbit with positive Lyapunov exponent both forwards and backwards in time. The attractor itself is a non-continuous invariant graph with negative Lyapunov exponent, often referred to as ‘SNA’. In contrast to former results in this direction, our conditions are${\mathcal{C}}^{2}$-open in the fibre maps. By applying a general result about saddle-node bifurcations in skew-products, we obtain a conclusion on the occurrence of non-smooth bifurcations in the respective families. Explicit examples show the applicability of the derived statements.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference27 articles.

1. Dynamics of the Quasi-Periodic Schrödinger Cocycle at the Lowest Energy in the Spectrum

2. On the role of quasiperiodic forcing in the interannual and interdecadal climate variations;Sonechkin;CLIVAR Exchanges,2001

3. A note on strange nonchaotic attractors;Keller;Fund. Math.,1996

4. Lyapunov exponents for some quasi-periodic cocycles

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonsmooth Pitchfork Bifurcations in a Quasi-Periodically Forced Piecewise-Linear Map;International Journal of Bifurcation and Chaos;2024-05-23

2. On the probability of positive finite-time Lyapunov exponents on strange nonchaotic attractors;Discrete and Continuous Dynamical Systems;2024

3. Nonautonomous Bifurcation;Frontiers in Applied Dynamical Systems: Reviews and Tutorials;2023

4. On the effect of forcing on fold bifurcations and early-warning signals in population dynamics;Nonlinearity;2022-11-07

5. Quasi-Periodic Kicking of Circle Diffeomorphisms Having Unique Fixed Points;Moscow Mathematical Journal;2019-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3