Author:
BADER URI,DUCHESNE BRUNO,LÉCUREUX JEAN
Abstract
We consider actions of locally compact groups $G$ on certain CAT(0) spaces $X$ by isometries. The CAT(0) spaces we consider have finite dimension at large scale. In case $B$ is a $G$-boundary, that is a measurable $G$-space with some amenability and ergodicity properties, we prove the existence of equivariant maps from $B$ to the visual boundary $\partial X$.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献