Abstract
We study topological properties of the escaping endpoints and fast escaping endpoints of the Julia set of complex exponential $\exp (z)+a$ when $a\in (-\infty ,-1)$. We show neither space is homeomorphic to the whole set of endpoints. This follows from a general result stating that for every transcendental entire function $f$, the escaping Julia set $I(f)\cap J(f)$ is first category.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference15 articles.
1. Dynamical properties of some classes of entire functions
2. Residual Julia sets;Baker;J. Anal.,2000
3. [8] Dijkstra, J. J. and Lipham, D. S. . On cohesive almost zero-dimensional spaces. Preprint.
4. A characterization of smooth Cantor bouquets
5. Erdős space and homeomorphism groups of manifolds;Dijkstra;Mem. Amer. Math. Soc.,2010
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Exponential Iteration and Borel Sets;Computational Methods and Function Theory;2024-03-29
2. Distinguishing endpoint sets from Erdős space;Mathematical Proceedings of the Cambridge Philosophical Society;2022-02-15
3. Escaping sets are not sigma-compact;Proceedings of the American Mathematical Society;2021-10-12