Directional recurrence and directional rigidity for infinite measure preserving actions of nilpotent lattices

Author:

DANILENKO ALEXANDRE I.

Abstract

Let$\unicode[STIX]{x1D6E4}$be a lattice in a simply connected nilpotent Lie group$G$. Given an infinite measure-preserving action$T$of$\unicode[STIX]{x1D6E4}$and a ‘direction’ in$G$(i.e. an element$\unicode[STIX]{x1D703}$of the projective space$P(\mathfrak{g})$of the Lie algebra$\mathfrak{g}$of$G$), some notions of recurrence and rigidity for$T$along$\unicode[STIX]{x1D703}$are introduced. It is shown that the set of recurrent directions${\mathcal{R}}(T)$and the set of rigid directions for$T$are both$G_{\unicode[STIX]{x1D6FF}}$. In the case where$G=\mathbb{R}^{d}$and$\unicode[STIX]{x1D6E4}=\mathbb{Z}^{d}$, we prove that (a) for each$G_{\unicode[STIX]{x1D6FF}}$-subset$\unicode[STIX]{x1D6E5}$of$P(\mathfrak{g})$and a countable subset$D\subset \unicode[STIX]{x1D6E5}$, there is a rank-one action$T$such that$D\subset {\mathcal{R}}(T)\subset \unicode[STIX]{x1D6E5}$and (b)${\mathcal{R}}(T)=P(\mathfrak{g})$for a generic infinite measure-preserving action$T$of$\unicode[STIX]{x1D6E4}$. This partly answers a question from a recent paper by Johnson and Şahin. Some applications to the directional entropy of Poisson actions are discussed. In the case where$G$is the Heisenberg group$H_{3}(\mathbb{R})$and$\unicode[STIX]{x1D6E4}=H_{3}(\mathbb{Z})$, a rank-one$\unicode[STIX]{x1D6E4}$-action$T$is constructed for which${\mathcal{R}}(T)$is not invariant under the natural ‘adjoint’$G$-action.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference18 articles.

1. Induced Representations of Locally Compact Groups I

2. On a class of homogeneous spaces;Malcev;Izv. Akad. Nauk. SSSR Ser. Mat.,1949

3. On the entropy geometry of cellular automata;Milnor;Complex Systems,1988

4. A ratio ergodic theorem for commuting, conservative, invertible transformations with quasi-invariant measure summed over symmetric hypercubes

5. Zero entropy and directional Bernoullicity of a Gaussian ℤ2 -action;Ferenczi;Proc. Amer. Math. Soc.,1995

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Directional ergodicity, weak mixing and mixing for Zd- and Rd-actions;Indagationes Mathematicae;2023-07

2. Symmetric stable processes on amenable groups;Studia Mathematica;2023

3. Ergodic Theory: Nonsingular Transformations;Encyclopedia of Complexity and Systems Science Series;2023

4. Ergodic Theory: Nonsingular Transformations;Encyclopedia of Complexity and Systems Science;2022

5. Weak Mixing for Infinite Measure Invertible Transformations;Lecture Notes in Mathematics;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3