Abstract
Let $G=(G_{n})_{n}$ be a strictly increasing sequence of positive integers with $G_{0}=1$. We study the system of numeration defined by this sequence by looking at the corresponding compactification ${\mathcal{K}}_{G}$ of $\mathbb{N}$ and the extension of the addition-by-one map ${\it\tau}$ on ${\mathcal{K}}_{G}$ (the ‘odometer’). We give sufficient conditions for the existence and uniqueness of ${\it\tau}$-invariant measures on ${\mathcal{K}}_{G}$ in terms of combinatorial properties of $G$.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference35 articles.
1. Odometers on Regular Languages
2. Adding machines and wild attractors
3. α-expansions, linear recurrences, and the sum-of-digits function
4. Formules sommatoires et systèmes de numération lies aux substitutions;Dumont;Séminaires de Théor. des Nombres, Bordeaux,1987/88
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献