Abstract
Let $(X,f)$ be a dynamical system, where $X$ is a perfect Polish space and $f:X\rightarrow X$ is a continuous map. In this paper we study the invariant dependent sets of a given relation string ${\it\alpha}=\{R_{1},R_{2},\ldots \}$ on $X$. To do so, we need the relation string ${\it\alpha}$ to satisfy some dynamical properties, and we say that ${\it\alpha}$ is $f$-invariant (see Definition 3.1). We show that if ${\it\alpha}=\{R_{1},R_{2},\ldots \}$ is an $f$-invariant relation string and $R_{n}\subset X^{n}$ is a residual subset for each $n\geq 1$, then there exists a dense Mycielski subset $B\subset X$ such that the invariant subset $\bigcup _{i=0}^{\infty }f^{i}B$ is a dependent set of $R_{n}$ for each $n\geq 1$ (see Theorems 5.4 and 5.5). This result extends Mycielski’s theorem (see Theorem A) when $X$ is a perfect Polish space (see Corollary 5.6). Furthermore, in two applications of the main results, we simplify the proofs of known results on chaotic sets in an elegant way.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献