Reduction of dynatomic curves

Author:

DOYLE JOHN R.,KRIEGER HOLLY,OBUS ANDREW,PRIES RACHEL,RUBINSTEIN-SALZEDO SIMON,WEST LLOYD

Abstract

In this paper, we make partial progress on a function field version of the dynamical uniform boundedness conjecture for certain one-dimensional families ${\mathcal{F}}$ of polynomial maps, such as the family $f_{c}(x)=x^{m}+c$, where $m\geq 2$. We do this by making use of the dynatomic modular curves $Y_{1}(n)$ (respectively $Y_{0}(n)$) which parametrize maps $f$ in ${\mathcal{F}}$ together with a point (respectively orbit) of period $n$ for $f$. The key point in our strategy is to study the set of primes $p$ for which the reduction of $Y_{1}(n)$ modulo $p$ fails to be smooth or irreducible. Morton gave an algorithm to construct, for each $n$, a discriminant $D_{n}$ whose list of prime factors contains all the primes of bad reduction for $Y_{1}(n)$. In this paper, we refine and strengthen Morton’s results. Specifically, we exhibit two criteria on a prime $p$ dividing $D_{n}$: one guarantees that $p$ is in fact a prime of bad reduction for $Y_{1}(n)$, yet this same criterion implies that $Y_{0}(n)$ is geometrically irreducible. The other guarantees that the reduction of $Y_{1}(n)$ modulo $p$ is actually smooth. As an application of the second criterion, we extend results of Morton, Flynn, Poonen, Schaefer, and Stoll by giving new examples of good reduction of $Y_{1}(n)$ for several primes dividing $D_{n}$ when $n=7,8,11$, and $f_{c}(x)=x^{2}+c$. The proofs involve a blend of arithmetic and complex dynamics, reduction theory for curves, ramification theory, and the combinatorics of the Mandelbrot set.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference33 articles.

1. Arithmetic properties of periodic points of quadratic maps, II

2. Rational 6-Cycles Under Iteration of Quadratic Polynomials

3. Preperiodic points for rational functions defined over a rational function field of characteristic zero;Canci;New York J. Math.,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Moduli spaces for dynamical systems with portraits;Illinois Journal of Mathematics;2020-09-01

2. Gonality of dynatomic curves and strong uniform boundedness of preperiodic points;Compositio Mathematica;2020-02-17

3. Current trends and open problems in arithmetic dynamics;Bulletin of the American Mathematical Society;2019-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3