Abstract
For a class of competitive maps there is an invariant one-codimensional manifold (the carrying simplex) attracting all non-trivial orbits. In this paper it is shown that its convexity implies that it is a $C^{1}$ submanifold-with-corners, neatly embedded in the non-negative orthant. The proof uses the characterization of neat embedding in terms of inequalities between Lyapunov exponents for ergodic invariant measures supported on the boundary of the carrying simplex.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献