Author:
CALEGARI DANNY,KOCH SARAH,WALKER ALDEN
Abstract
In 1985, Barnsley and Harrington defined a ‘Mandelbrot Set’${\mathcal{M}}$for pairs of similarities: this is the set of complex numbers$z$with$0<|z|<1$for which the limit set of the semigroup generated by the similarities$$\begin{eqnarray}x\mapsto zx\quad \text{and}\quad x\mapsto z(x-1)+1\end{eqnarray}$$is connected. Equivalently,${\mathcal{M}}$is the closure of the set of roots of polynomials with coefficients in$\{-1,0,1\}$. Barnsley and Harrington already noted the (numerically apparent) existence of infinitely many small ‘holes’ in${\mathcal{M}}$, and conjectured that these holes were genuine. These holes are very interesting, since they are ‘exotic’ components of the space of (2-generator) Schottky semigroups. The existence of at least one hole was rigorously confirmed by Bandt in 2002, and he conjectured that the interior points are dense away from the real axis. We introduce the technique oftrapsto construct and certify interior points of${\mathcal{M}}$, and use them to prove Bandt’s conjecture. Furthermore, our techniques let us certify the existence of infinitely many holes in${\mathcal{M}}$.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference16 articles.
1. On some properties of attractors generated by iterated function systems;Indlekofer;Acta Sci. Math. (Szeged),1995
2. Strongly automatic semigroups
3. A mandelbrot set for pairs of linear maps
4. Zeros of polynomials with 0, 1 coefficients;Odlyzko;Enseign. Math.,1993
5. Word Processing in Groups
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献