Author:
ASSANI IDRIS,DUNCAN DAVID,MOORE RYO
Abstract
In this paper we extend Bourgain’s double recurrence result to the Wiener–Wintner averages. Let $(X,{\mathcal{F}},{\it\mu},T)$ be a standard ergodic system. We will show that for any $f_{1},f_{2}\in L^{\infty }(X)$, the double recurrence Wiener–Wintner average $$\begin{eqnarray}\frac{1}{N}\mathop{\sum }_{n=1}^{N}f_{1}(T^{an}x)f_{2}(T^{bn}x)e^{2{\it\pi}int}\end{eqnarray}$$ converges off a single null set of $X$ independent of $t$ as $N\rightarrow \infty$. Furthermore, we will show a uniform Wiener–Wintner double recurrence result: if either $f_{1}$ or $f_{2}$ belongs to the orthogonal complement of the Conze–Lesigne factor, then there exists a set of full measure such that the supremum on $t$ of the absolute value of the averages above converges to $0$.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference22 articles.
1. [5] I. Assani and R. Moore . Extension of double recurrence Wiener–Wintner theorem to polynomials. Preliminary Version, 2014, arXiv:1408.3064.
2. A new proof of Szemerédi's theorem
3. Pointwise characteristic factors for the multiterm return times theorem
4. Nonconventional ergodic averages and nilmanifolds
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献