Abstract
AbstractWe consider cocycles of isometries on spaces of non-positive curvature $H$. We show that the supremum of the drift over all invariant ergodic probability measures equals the infimum of the displacements of continuous sections under the cocycle dynamics. In particular, if a cocycle has uniform sublinear drift, then there are almost invariant sections, that is, sections that move arbitrarily little under the cocycle dynamics. If, in addition, $H$ is a symmetric space, then we show that almost invariant sections can be made invariant by perturbing the cocycle.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献